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SUMMARY

Super-resolution of SAR data requires that the complex point
spread function (PSF) of the SAR be accurately known. We propose
and implement a method of measuring the PSF which uses existing
SAR images of targets as raw data. We find that in addition to
the expected distortions of the azimuth response which arise fron
swing of the antenna and from artefacts of motion compensation
processing, there are extensive and unexpected distortions of the
range response. Most importantly the range response does not obey
the principle of superposition (ie it is non-linear), and so SAR
PSF calibration must be conducted with care. We estimate the
complex SAR PSF when a bright target is present.
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1. Introduction

The RSRE synthetic aperture radar (SAR) system is a fully
coherent radar with an antenna length L = l.9m operating at
frequency v = 10GHz (wavelength X = 3cm). In operation the
antenna is carried by an aircraft and is nominally pointed
horizontally in a direction perpendicular to the aircraft's line
of motion. Below we show the geometry which is relevant to
operating the SAR system.

AZIMUTH

A A N > <ZOF FLIGHT

AIRCRAFT

The azimuth direction is parallel to the nominal straight line
along which the aircraft flies, and the range direction is
perpendicular to this line. For a given range gate in the
receiver the parameter r measures the actual range (ie slant
range) from the antenna. Distance a in the azimuth direction is
measured with respect to any convenient reference azimuth
position.

Range resolution is provided by a chirp pulse compression system
with a 100MHz bandwidth which ideally gives a range resolution of
1.5m assuming no weighting. In order to suppress range sidelobes
Taylor weighting is imposed which reduces the effective chirp
bandwidth and so correspondingly degrades the range resolution
somewhat to approximately 2m. We shall see that in fact the range
resolution is somewhat worse than this in practice, and that the
range sidelobe structure is nothing like what we would expect.

Azimuth resolution is provided by coherently cross-correlating
the returns in a single range gate with a reference function (ie
matched filtering): this forms a synthetic aperture and
corresponding synthetic beam. Ideally the resolution is then half
the antenna length which is about Im. Again, the antenna itself
is weighted in order to reduce the real beam sidelobes so the
achievable resolution is reduced somewhat.

In practice there are further causes of resolution degradation
for both the range and azimuth directions. The range pulse
compression system is not guaranteed to perform ideally since its
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various component tolerances may drift after calibration, for
instance. For azimuth resolution a serious problem is that naive
matched filtering usually fails to form a compact synthetic beam,
because the assumption that the aircraft flies in a straight line
is incorrect. This problem has been the subject of many
investigations which have culminated in a fully automatic data
driven method of aircraft motion compensation [1]. A further
problem for azimuth resolution is that the antenna is servoed to
point perpendicular to the direction of aircraft motion, and so
the real beam swings backwards and forwards in the range-azimuth
plane. This modulates the returns on a time scale which is
usually comparable with the synthetic aperture length, and so it
can have a significant effect on the azimuth response.

The imagery which is obtained fr.m the RSRE SAR after motion
compensation is an excellent raw source of information for most
image analysis packages. However any image analysis method which
relies on detailed knowledge of the range and azimuth responses
of the SAR can not so easily be applied. We refer in particular
to super-resolution [23 which requires the complex valued point
spread function (PSF) of the SAR as one of its inputs. Ideally we
should process, with motion compensation, raw data which is
derived from known point-like reflectors (eg corner cubes) which
are placed on a weakly scattering background, but such data
obtained under carefully controlled conditions is not available.

In this memorandum we demonstrate how the complex valued range
response may be obtained, and we then attempt to obtain the
azimuth response, although this is marred by the presence of
antenna swing.

2. Point spread function theory

We shall first derive two alternative routes for obtaining
information about a PSF from complex imagery. If we assume that
the imaging system is linear and translation invariant (ie
isoplanatic) then we may write the imaging equation as

g(x) = f dy h(x-y) f(y) (2.1)

where we have adopted a one-dimensional notation for simplicity,
and where the various terms are defined as:

f(y) - complex scattered amplitude at position y
g(x) - complex image amplitude at position x (2.2)
h(x-y) a complex PSF for separation x-y

Now consider two alternative types of f(y).

(1) Uncorrelated scattered amplitudes

<f(yl)f*(y2)> = E 8(yl-y 2 ) (2.3)
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The aigle brackets denote an ensemble average, which is the
same as a spatial average when the random process which
generates the f(y) is stationary and ergodic. The
correlation properties of g(x) are then

<g(xl)g*(x 2 )> = f dyldy 2 h(xl-yl)h*(x 2-y2 )<f(yl)f*(y 2 )>
= E Jdy h(xl-Ylh (x2-y)
= E fdy h(y) h (x2 -xl+Y) (2.4)

The ensemble average <..> may be replaced by a spatial

average by a spatial average to yield

<g(xl)g*(x 2 )> a fdx g(x)g*(x 2-xl+x) (2.5)

Combining equations (2.3) and (2.4) and Fourier transforming
with respect to x2-xI yields

IG(k) 12 a iH(k) 2 (2.6)

where k is spatial frequency, and G(k) and H(k) are the
Fourier transforms of g(x) and h(x) respectively. The
spatial power spectrum of an image of an uncorrelated
stationary scattered field is thus equal (up to an
unimportant constant factor) to the spatial power spectru-
of the PSF.

This result may be used to obtain IH(k) 2 for the SAP by
Fourier transforming SAR images of featureless regions of
"pure speckle" : these correspond the assumptions which we
made about f(y) in equation (2.3)

(2) Point source of scattered amplitude

Such a source at position y=0 is represented as

f(y) = A 6(y) (2.7)

which gives an image

g(x) = Jdy T(x-y) A 6(y)
= A T(x) (2.8)

Thus a point target gives rise to an image which is
trivially proportional to the PSF which we wish to
determine.

The conditions under which SAR data are collected make it
impossible to find isolated point targets which satisfy
equation (2.7) exactly, because they are invariably
surrounded by clutter, and Eo at best f(y) has the form

f(y) = A 6(y) + fo(y) (2.9)

The best that we can attempt to do is to seek point-like
targets which have a large amplitude A in the hope that the
AS(y) term dominates the fo(y) term in equation (2.9).
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This analysis has been expressed in one dimension only. For the
(two-dimensional) SAR it is a very good approximation to
factorise the PSF and its Fourier transform into range and
azimuth parts thus

H(k) - H(kr,ka) = R(kr) A(ka) (2.1G)

where R(kr) and A(ka) are the spatial Fourier transforms of the
range and azimuth factors respectively. This approximation
becomes invalid when "range walk" occurs, but such conditions do
not occur for the RSRE SAR so we shall assume PSF factorisation.

A prescription for determining the SAR PSF which is suggested b"
the above analysis to obtain the spatial power spectrum IH(k)j
from regions of pure speckle: such data is plentiful so the
statistical errors will be small. Following this the phase
arg(H(k)) of the Fourier transform H(k) of the PSF could be
obtained from point-like target data: this would place the least
possible reliance on the (somewhat suspect) point-target data.
However we assumed that the PSF was translation invariant which
is very good approximation only for the range direction because
the characteristic drift time of the range response is very long,
and so we may determine R(k ) using the above analysis. The
azimuth response is not translationally invariant because of the
effects of antenna swing, which makes this approach to
determining A(ka) somewhat questionable.

3. Point spread function extraction

The raw data which we used to determine the PSF was derived fror
SAR tape number 35. The header block contained the following
information:

Date of flight: 12 April 1984
Altitude: 27000 feet
Nominal range: 35 kilometers
Nominal velocity: 200 feet/second
Area imaged: Salisbury plain (Larkhiil)

We first surveyed the entire tape at a 24 metre linear resolution
to localise regions of interest (see Figure 1). Note that this
image does not need to be autofocussed because we are interested
only in discovering roughly where regions of pure Gaussian
speckle and regions containing point-like targets are located. In
Figure 2 we present a montage of 25 autofoLussed 32x32 high
resolution images (1.5 metres linear resolution) of regions which
were selected from the low resolution image in Figure 1 as
containing likely point targets. Clearly most of these images
have a complicated structure at high resolution and so must be
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rejected from the PSF analysis. This leaves only images 1, 2 and
12 from Figure 2 as good candidates, and we show these as 64x64
high resolution images in Figure 3. These comprise our raw target
data from which we intend to extract the SAR PSF.

The first step in the analysis is to preprocess the complex
target data so as to centre the peak of the target image on the
(0,0) pixel of the image. This will ensure that the Fourier
transform has no artificial linear phase gradient present. We
achieve this by sinc interpolating the 64x64 complex images onto
a 256x256 image in order to subsample the complex data, and then
register the peak in each 256x256 image with the (0,0) pixel. We
then invert the sinc interpolation to recover the correctly
centred 64x64 complex image. Target image 12 contains two
targets, so we generate two images, one with each target
correctly centred. We shall henceforth refer to targets 1, 2,
12.1 (upper-left) and 12.2 (lower right) as targets 1, 2, 3 and 4
respectively. We also adjust the phase of each 64x64 image
globally to ensure that the phase of the (0,0) pixel is the same
in each case; we arbitrarily choose zero phase.

We wish to obtain an estimate of the Fourier transform
H(k)=R(k )A(ka) (see equation (2.10)) of the SAR PSF from this
target data. However the target images have two principal
components: target and clutter. The clutter contribution to the
Fourier transform is incoherent and thus will degrade the
coherent target contribution, so we must eliminate it as far as
possible. This is easily achieved by masking out the clutter in
the image in such a way that we can be sure that the clutter is
substantially removed, whilst the target is substantially
preserved. We therefore use a mask which has the form shown
below, where the black area (except the border) transmits and the
white areas do not transmit.

64

64

3
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The dimensions shown are in units of pixel separation. The cross
is centred on the (0,0) pixel (ie on the target). The 3 pixel
wide vertical stripe encompasses virtually all of the azimuth
factor of the SAR PSF, and the 5 pixel wide horizontal stripe
does the same for the range factor. The overall effect of the
cross is to reject clutter.

In Figure 4 we show the modulus of the Fourier transform of each
masked complex target image. In Figure 5 we show the phase of
these Fourier transforms, where -r is coded as black and +r is
coded as white. Targets 1-4 are found in the top-left, top-right,
bottom-left and bottom-right positions in Figures 4 and 5. When
viewing Figures 4 and 5 keep in mind that they are good
approximations to the Fourier transform H(k) of the SAR PSF.
Figure 4 reveals that the range component R(kr) of H(k) is
displaced from the origin, and so we may immediately deduce that
there is an anomalous range phase gradient produced somewhere in
the SAP system; this does not affect image quality of course. The
most important property of H(k) which is revealed by Figures 4
and 5 is the approximate constancy of the modulus and phase of
the azimuth component A(ka) with respect to ka so we may recover
a good estimate of the range component R(kr) ty averaging the
Fourier transform of the complex target data over ka.

The modulus of the Fourier transform averaged over azimuth is
shown for targets 1 and 2 in Figure 6, and for targets 3 and 4 in
Figure 7. The corresponding phases are shown in Figures 8 and 9.
The moduli are displayed on a scale which ranges from zero to the
maximum modulus in each case. The phases are displayed in the
range [-n,+r]. The principal feature of Figures 6 and 7 is the
very strong sawtooth component. This is not a design feature of
the SAP system, which is nominally has a Taylor weighted envelope
engineered into the SAW pulse compression filter. The exact
source of this sawtooth is not clear, but clearly the SAR system
is faulty. This problem is not too severe because the effect of
the sawtooth can be accounted for by calibrating the PSF as we
are attempting to do. The effect of the sawtooth on the SAP PSF
is clear; it acts as a diffraction grating which produces
anomalous sidelobes in the range direction. These are clearly
visible in Figure 3. The principal feature of Figures 8 and 9 is
phase stationarity in the region where the modulus is greatest,
and the wild fluctuations of phase in the regions where the
modulus is smallest. The small perturabations about zero phase
seem to be correlated with the sawtooth component of the modulus.
The wild fluctuations of pha.e arise because when the modulus is
small we approach the zeros of the complex Fourier transform
where phase must vary rapidly.

In Figure 10 we show the modulus and phase of the average of the
complex Fourier transforms corresponding to Figures 6-9. The
averaging process cleans up the modulus somewhat, and it reveals
that the small phase perturbations combine constructively to
produce a result which is clearly correlated with the sawtooth.
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We now use this best estimate of R(kr) to remove arg(R(kr9) from
the complex Fourier transforms of the target data, and then
average the resulting phase-compensated complex Fourier
transforms in the range direction. This procedure gives a good
estimate of A(ka) because the absence of range phase variation
ensures that the average in the range direction consists of
constructively interfering components. In Figures 11 and 12 we
show the moduli of this average for targets 1-4, and in Figures
13 and 14 we show the corresponding phases. The moduli are
displayed in the range zero to the maximum modulus in each case,
and the phase is displayed in the range [-n,+n3. In Figures 13
and 14 note how the phase is very close to zero except at the
very edge of the band; this indicates that the autofocussino
process is performing well. In Figure 15 we show the average of
the complex Fourier transforms corresponding to Figures 11-14.
The precise form of the modulus in Figure 15 is affected by the
real beam envelope, any residual clutter passed by the mask, the
precise details of the autofocussing program, and it could be
degraded by averaging over targets for which the antenna was
pointing in different directions. The phase in Figure 15 departs
from its constant value at the ends of the band, and we see from
Figures 13 and 14 that this trend is mostly systematic. The most
likely explanation for this effect is that the phase of a point
target as it sweeps through the beam has a quartic component
which dominates at the edge of the beam. This translates into a
systematic departure of the phase of A(ka) at the edge of the
band in high resolution images (which use a substantial fraction
of the real beam width). Another problem which may arise is
aliassing which can occur when phase compensation terms are
introduced into the data (by the SAR processing program) without
modifying the sampling scheme; this can lead to a small amount of
overspill at the ends of the band under typical conditions. All
of the problems discussed in this paragraph make the results in
Figure 15 suspect.

In an attempt to obtain better estimates of IR(kr)I and IA(ka)I
we now examine the modulus of the Fourier transform of pure
speckle (see equation (2.6)). In order to compare these results
with the estimates above from target data we selected 8 256x256
images containing pure speckle (as far as we could tell by eye).
We then split each such image into 16 64x64 subimages, and
averaged the modulus of the Fourier transform of all the 64x64
subimages obtained from one 256x256 image. We hope that each
256x256 image is not affected too badly by antenna swing, and
that therefore the averaging process does not smear the modulus.
The safety margin for this assumption is that the antenna swings
by much less than a beamwidth (wi degree) in the time it takes to
move 256 pixels (400 metres, or 2 seconds). A better averaging
scheme (which we have not attempted here) would be to select the
64x64 speckle images from the same azimuth position, thus
absolutely minimising the effect of antenna 3wing. The averaged
results for IR(kr)I and IA(ka)I for each of the 8 256x256
speckle images is shown in Figures 16-23. IR(kr) i is highly
reproducible as we expect, but IA(ka)I reveals that the antenna
is pointing in different directions for each of the 8 speckle
images. In Figure 24 we show the average of Figures 16-23 which
cleans up the estimate of IR(kr)i somewhat, but smears the
estimate of IA(ka)I because of antenna swing.

The most important result which we obtain from Figure 24 is that
IR(kr)I is NOT the same as the corresponding result obtained
from target data in Figure 10: this is a complete surprise! We
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have carefully checked that the minimum and maximum values on the
modulus displays are what we think they are. Although the general
structure of IR(kr)l is similar there are two obvious
differences. Firstly, the background "pedestal" is relatively
much weaker for the target than for speckle. Secondly, the
relative depth of modulation of the sawtooth is much greater for
the target than for speckle, although the peaks and troughs of
the sawtooth are located in the same places. The conclusion is
unavoidable: the SAR PSF does NOT obey the principle of
superposition (ie it is non-linear). Thus any calibration of the
SAR PSF much be performed under the conditions in which
subsequent image analysis is to be attempted. For instance,
super-resolution analyses the images of targets, so it would be
inappropriate to use an IR(kr) [ which is obtained from speckle
images. The precise cause of this non-linearity is not known at
present, but it would be highly desirable to remove it because it
complicates the detailed analysis of SAR images.

All previous studies have assumed that the RSRE SAR PSF obeys
superposition (ie is linear); consequently studies which attez-pt
to relate the SAR image to a cause (ie cross section) using a
fixed PSF might lead to incorrect conclusions about the relative
strength of weak and strong components of the cross section. In
particular the higher moments (but not the lower moments) of a
cross section depend strongly on its target-like component, so
the relative sizes of deduced high and low moments of a cross
section are likely to be in error due to the non-linearity of the
SAR PSF.

A further minor observation is the small peak in IR(kr) l at the
lower limit of the band in Figure 24. This is caused by an
error in the program which transposes the original raw data into
a form suitable for processing into an image. This error (which
has since been rectified) occasionally introduces into the data
an almost periodic component at the Nyquist frequency in the
range direction; this leads directly to the anomalous peak which
we observe.

Because we are interested in the SAR PSF for targets we must
discard all of the speckle results for IR(kr) I (Figures 16-24)
because of the non-linearity problem. A caveat that remains with
A(ka) is the possibility still of antenna swing corrupting the
results.

We present the modulus and phase of the estimated complex Fourier
transform of the SAR PSF (determined using Figures 10 and 15) in
Figure 25, and the modulus of the 4 times sinc interpolated PSF
in Figure 26. This is the best estimate of the non-linear SAR PSF
(in the target regime) which we can construct at present. A minor
improvement would be possible by unfolding the effects of antenna
swing, but we do not consider the improvement to be currently
worth the effort.
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4. Discussion and conclusions

This work is necessary because of a pressing need for an accurate
calibration of the RSRE SAR PSF for use in super-resolution work,
and because there is no possibility that a rigorous calibration
of the SAR under controlled conditions will be performed in the
forseeable future. Although the method that we have used has
undesirable sources of error such as clutter contamination of
targets and antenna swing smearing, it is nevertheless the only
realistic choice open to us.

One potential output parameter from motion compensation
processing is the point direction of the real beam in the range-
azimuth plane, which we could be used to correct the azimuth data
to remove some of the effects of antenna swing. However the ideal
solution is simply to servo the antenna so that it always points
perpendicular to some nominal line of flight; the need for
antenna swing compensation would then be removed.

We find that the SAR does not obey the principle of superposition
(ie it is non-linear) because it responds in different ways to
(weak) clutter and to (strong) targets. This prevents us from
combining the target and clutter results when determining the
PSF. Such non-linearity also raises a question mark over the
comparison of targets and clutter which are reconstructed fror
SAR images. In the language of moments, is it valid to compare
low order and high order reconstructed moments? These are open
questions at present, and PSF-sensitive predictions should be
reassessed in the light of our discovery.

The PSF results from targets are consistent enough for us to
present an estimate of the SAR PSF (Figure 26). This PSF shows
unexpected diffraction peaks in the range direction; these arise
from a sawtooth component in the Fourier transform of the range
response. This is a fault in the SAR system which should be
rectified, although image processing techniques could be used to
remove its effect.

On inspection of Figure 26 the range resolution is clearly much
worse than the azimuth resolution. This PSF is obtained using
target (not clutter) data, and so the high spatial frequencies in
the range direction are suppressed somewhat relative to those for
clutter. Comparing Figures 10 and 15 reveals that the bandwidth
in the range direction is only about 1/3 of that in the azimuth
direction (which is nominally full band). The PSF in Figure 26
thus has an azimuth resolution -1.5 metre and a range resolution
4-5 metre. Any estimate of the range resolution which is

obtained using a global measure such as an image autocorrelation
function will be sensitive principally to the range bandwidth
shown in Figure 24, which leads to a much better range resolution
than Figure 10. Such an estimate is clearly inappropriate if the
resolution criterion is then applied to targets.

We intend to use the SAR PSF calibrated from target data in
super-resolution studies of RSRE SAR data: results will be
presented in the future.
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Figure captions

Figure 1: Low resolution image (24 metre linear pixel size) of
SAR tape 35.

Figure 2: Montage of high resolution images (1.5 metre linear
pixel size) of 25 possible targets extracted from
Figure 1.

Figure 3: 64x64 high resolution images of 3 candidate point
target images (1, 2 and 12) extracted from Figure
2.

Figure 4: Moduli of Fourier transforms of targets in Figure 3.
See the text for a more detailed discussion.

Figure 5: Phases of Fourier transforms corresponding to Figure
4.

Figure 6 and
Figure 7: Moduli of range Fourier transforms of targets in

Figure 3 obtained by coherent azimuth averaging.

Figure 8 and
Figure 9: Phases of range Fourier transforms corresponding to

Figures 6 and 7.

Figure 10: Modulus and phase of average cf range Fourier
transforms obtained from Figures 6-9.

Figure 11 and
Figure 12: Moduli of azimuth Fourier transforms of targets in

Figure 3 obtained by coherent range averaging after
range phase correction. See the text for a more
detailed discussion.
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Figure 13 and
Figure 14; Phases of azimuth Fourier transforms corresponding to

Figures 11 and 12.

Figure 15: Modulus and phase of average of azimuth Fourier
transforms obtained from Figures 11-15.

Figures 16-23:
Moduli of range and azimuth Fourier transforms
each obtained from a modulus average of 8 64x64
Fourier transforms of pure speckle.

Figure 24: Moduli of range and azimuth Fourier transforms
obtained by averaging Figures 16-23.

Figure 25: Modulus and phase of estimated Fourier transform
obtained from Figures 10 and 15.

Figure 26: Modulus of estimated SAR point spread function.
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